We provide the first stochastic convergence rates for adaptive Gauss--Hermite quadrature applied to normalizing the posterior distribution in Bayesian models. Our results apply to the uniform relative error in the approximate posterior density, the coverage probabilities of approximate credible sets, and approximate moments and quantiles, therefore guaranteeing fast asymptotic convergence of approximate summary statistics used in practice. We demonstrate via simulation a simple model that matches our stochastic upper bound for small sample sizes, and apply the method in two challenging low-dimensional examples. Further, we demonstrate how adaptive quadrature can be used as a crucial component of a complex Bayesian inference procedure for high-dimensional parameters. The method is implemented and made publicly available in the \texttt{aghq} package for the \texttt{R} language.


翻译:我们为贝叶斯模型的后方分布正常化提供了第一个适应性高斯-赫米特二次曲线的切合率。 我们的结果适用于近似后方密度的统一相对错误、大致可靠的数据集的覆盖率概率、近似可靠数据集的概率以及近似时点和量度,从而保证了实践中使用的近似摘要统计数据的快速零散趋同。 我们通过模拟演示一个简单模型,该模型与我们小样尺寸的随机上层相匹配,并在两个具有挑战性的低维度实例中应用该方法。 此外,我们演示了适应性二次曲线如何作为高维参数的复杂贝叶斯推断程序的关键组成部分加以使用。该方法得到实施,并在\ textt{aghq} 套件中公布用于\ textt{R} 语言的该方法。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
151+阅读 · 2020年8月27日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
151+阅读 · 2020年8月27日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员