We provide the first stochastic convergence rates for adaptive Gauss--Hermite quadrature applied to normalizing the posterior distribution in Bayesian models. Our results apply to the uniform relative error in the approximate posterior density, the coverage probabilities of approximate credible sets, and approximate moments and quantiles, therefore guaranteeing fast asymptotic convergence of approximate summary statistics used in practice. We demonstrate via simulation a simple model that matches our stochastic upper bound for small sample sizes, and apply the method in two challenging low-dimensional examples. Further, we demonstrate how adaptive quadrature can be used as a crucial component of a complex Bayesian inference procedure for high-dimensional parameters. The method is implemented and made publicly available in the \texttt{aghq} package for the \texttt{R} language.
翻译:我们为贝叶斯模型的后方分布正常化提供了第一个适应性高斯-赫米特二次曲线的切合率。 我们的结果适用于近似后方密度的统一相对错误、大致可靠的数据集的覆盖率概率、近似可靠数据集的概率以及近似时点和量度,从而保证了实践中使用的近似摘要统计数据的快速零散趋同。 我们通过模拟演示一个简单模型,该模型与我们小样尺寸的随机上层相匹配,并在两个具有挑战性的低维度实例中应用该方法。 此外,我们演示了适应性二次曲线如何作为高维参数的复杂贝叶斯推断程序的关键组成部分加以使用。该方法得到实施,并在\ textt{aghq} 套件中公布用于\ textt{R} 语言的该方法。