This paper considers decentralized stochastic optimization over a network of~$n$ nodes, where each node possesses a smooth non-convex local cost function and the goal of the networked nodes is to find an~$\epsilon$-accurate first-order stationary point of the sum of the local costs. We focus on an online setting, where each node accesses its local cost only by means of a stochastic first-order oracle that returns a noisy version of the exact gradient. In this context, we propose a novel single-loop decentralized hybrid variance-reduced stochastic gradient method, called \texttt{GT-HSGD}, that outperforms the existing approaches in terms of both the oracle complexity and practical implementation. The \texttt{GT-HSGD} algorithm implements specialized local hybrid stochastic gradient estimators that are fused over the network to track the global gradient. Remarkably, \texttt{GT-HSGD} achieves a network-independent oracle complexity of~$O(n^{-1}\epsilon^{-3})$ when the required error tolerance~$\epsilon$ is small enough, leading to a linear speedup with respect to the centralized optimal online variance-reduced approaches that operate on a single node. Numerical experiments are provided to illustrate our main technical results.


翻译:本文将考虑一个网络 ~ $n$ 节点的分散式随机优化, 每个节点都拥有一个平滑的非混凝土本地成本功能, 而网络节点的目标是找到一个 $\ epsilon$- 准确的第一阶固定点, 也就是本地成本的总和。 我们关注一个在线设置, 每个节点只能通过一个随机第一阶或触角来访问其本地成本, 返回精确梯度的响亮版本 。 在这方面, 我们提议一个创新的单圈分散式混合变异变异变异变异变异变异混合法, 叫做\ textt{ GT- HSGD}, 其目标在于找到一个 $\ texttlon$ - GT- HSGD} 的现有方法, 其复杂性在质变异复杂性和实际执行上都高于现有的方法 。 ktextt{ GT- HSGD} 算法实施专门的本地混合混合随机梯度梯度测度测算器, 以追踪全球梯度 。 值得称,\ texttlett{ GT- HSGD} 实现一个网络独立或卡质变变异方法, $ $, 当我们需要一个最精度 最优化的系统化到最精确的 直调调调调 至 至最小化的操作, 至最优度直线性 至最小化的路径时, 至最小的线性操作性 至最优度, 至最小化 至最小 至最小的 至最小化的 至最小化 至最小的 至最小的 至最小化的 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年10月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【LeetCode 136】 关关的刷题日记32 Single Number
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Exact Stochastic Second Order Deep Learning
Arxiv
0+阅读 · 2021年4月8日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年10月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【LeetCode 136】 关关的刷题日记32 Single Number
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员