We propose stochastic variance reduced algorithms for solving convex-concave saddle point problems, monotone variational inequalities, and monotone inclusions. Our framework applies to extragradient, forward-backward-forward, and forward-reflected-backward methods both in Euclidean and Bregman setups. All proposed methods converge in exactly the same setting as their deterministic counterparts and they either match or improve the best-known complexities for solving structured min-max problems. Our results reinforce the correspondence between variance reduction in variational inequalities and minimization. We also illustrate the improvements of our approach with numerical evaluations on matrix games.


翻译:我们建议采用随机差异减少的算法来解决凸起点问题、单色调变异和单色包容问题。 我们的框架适用于Euclidean 和 Bregman 的超级、前向前向前向和前向反向反向配置方法。 所有建议的方法都与其确定性对应方法完全一致,它们要么匹配,要么改进解决结构化微轴问题最著名的复杂方法。 我们的结果强化了差异性不平等和最小化差异的对应性。 我们还展示了我们在矩阵游戏上进行数字评估的方法的改进。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
12+阅读 · 2018年6月25日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
12+阅读 · 2018年6月25日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员