We propose a family of lossy integer compressions for Stochastic Gradient Descent (SGD) that do not communicate a single float. This is achieved by multiplying floating-point vectors with a number known to every device and then rounding to an integer number. Our theory shows that the iteration complexity of SGD does not change up to constant factors when the vectors are scaled properly. Moreover, this holds for both convex and non-convex functions, with and without overparameterization. In contrast to other compression-based algorithms, ours preserves the convergence rate of SGD even on non-smooth problems. Finally, we show that when the data is significantly heterogeneous, it may become increasingly hard to keep the integers bounded and propose an alternative algorithm, IntDIANA, to solve this type of problems.


翻译:我们建议为悬浮渐变源(SGD)建立一个不传递单一浮点的损耗整整数压缩组(SGD ) 。 这是通过将浮点矢量乘以每个设备已知的数字,然后四舍五入到一个整数来实现的。 我们的理论表明,当矢量适当缩放时,SGD的迭代复杂性不会改变为恒定因素。 此外,这既包括电流和非电流函数,也包括不设超计数的功能。 与其他压缩算法相比, 我们的算法保持SGD的趋同率, 甚至在非悬浮问题上也是如此。 最后, 我们显示,当数据极异时, 将整数捆绑起来并提议一种替代算法( IntDIANA) 来解决这类问题可能会变得越来越困难。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
【AAAI2021】时间关系建模与自监督的动作分割
专知会员服务
37+阅读 · 2021年1月24日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
39+阅读 · 2020年3月9日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年4月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年4月8日
Exact Stochastic Second Order Deep Learning
Arxiv
0+阅读 · 2021年4月8日
Arxiv
0+阅读 · 2021年4月7日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
【AAAI2021】时间关系建模与自监督的动作分割
专知会员服务
37+阅读 · 2021年1月24日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
39+阅读 · 2020年3月9日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
3+阅读 · 2019年4月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员