Research on both natural intelligence (NI) and artificial intelligence (AI) generally assumes that the future resembles the past: intelligent agents or systems (what we call 'intelligence') observe and act on the world, then use this experience to act on future experiences of the same kind. We call this 'retrospective learning'. For example, an intelligence may see a set of pictures of objects, along with their names, and learn to name them. A retrospective learning intelligence would merely be able to name more pictures of the same objects. We argue that this is not what true intelligence is about. In many real world problems, both NIs and AIs will have to learn for an uncertain future. Both must update their internal models to be useful for future tasks, such as naming fundamentally new objects and using these objects effectively in a new context or to achieve previously unencountered goals. This ability to learn for the future we call 'prospective learning'. We articulate four relevant factors that jointly define prospective learning. Continual learning enables intelligences to remember those aspects of the past which it believes will be most useful in the future. Prospective constraints (including biases and priors) facilitate the intelligence finding general solutions that will be applicable to future problems. Curiosity motivates taking actions that inform future decision making, including in previously unmet situations. Causal estimation enables learning the structure of relations that guide choosing actions for specific outcomes, even when the specific action-outcome contingencies have never been observed before. We argue that a paradigm shift from retrospective to prospective learning will enable the communities that study intelligence to unite and overcome existing bottlenecks to more effectively explain, augment, and engineer intelligences.
翻译:关于自然情报(NI)和人工情报(AI)的研究通常假定未来与过去相似:智能剂或系统(我们称之为“情报”)观察和在世界上采取行动,然后利用这一经验来根据同类未来的经验采取行动。我们称之为“反向学习”。例如,情报可能看到一系列物体的图片及其名称,并学会命名它们。回顾性学习情报只能说出更多相同对象的图片。我们争辩说,这不是真正的情报。在许多现实世界的问题中,无论是国家机构还是大赦国际都必须为不确定的未来而有效地学习。两者都必须更新内部模型,以便在今后的任务中发挥作用,例如,在新的环境中点出根本性的新目标,有效利用这些对象,或者实现以前未计数的目标。这种为未来学习我们称为“预测性学习”的能力。我们阐述了四种相关因素,共同界定了未来的学习。我们不断学习使情报能够让过去那些我们认为最有用的方面成为历史的记忆。在许多现实世界中,国家机构和大赦国际都必须有效地学习一个不确定的未来的未来的转变。 预测性限制会增加未来的行动,包括前期行动。 预测性行动和前期的动力, 将使得未来的选择未来行动, 将使得未来的行动更有利于理解, 学习。前期行动。 选择未来行动, 将使得未来行动, 前进的改变。 将使得未来的行动 学习, 将使得未来的行动, 学习 前进和前的改变。 学习 学习 将使得未来行动 学习 学习 前进的改变。