A linear layout of a graph typically consists of a total vertex order, and a partition of the edges into sets of either non-crossing edges, called stacks, or non-nested edges, called queues. The stack (queue) number of a graph is the minimum number of required stacks (queues) in a linear layout. Mixed linear layouts combine these layouts by allowing each set of edges to form either a stack or a queue. In this work we initiate the study of the mixed page number of a graph which corresponds to the minimum number of such sets. First, we study the edge density of graphs with bounded mixed page number. Then, we focus on complete and complete bipartite graphs, for which we derive lower and upper bounds on their mixed page number. Our findings indicate that combining stacks and queues is more powerful in various ways compared to the two traditional layouts.
翻译:图形的线性版式通常包含一个总的顶点顺序, 以及将边缘分割成一组非交叉边缘, 称为堆叠, 或称为非内向边缘, 叫做队列。 一个图的堆叠( 队列) 数是线性版式中所需的堆叠( 队列) 的最低数量 。 混合线性版式将这些布局结合起来, 允许每一组边缘组成堆叠或队列 。 在此工作中, 我们开始研究一个与这些组的最小数量相对应的图的混合页数 。 首先, 我们研究图表的边缘密度, 并使用条框的混合页数 。 然后, 我们聚焦于完整和完整的双部分图, 我们用它们混合页数的上下和上边框来绘制。 我们的发现显示, 与两个传统布局相比, 将堆叠和队列组合在一起的方式更加强大 。