A rich class of network models associate each node with a low-dimensional latent coordinate that controls the propensity for connections to form. Models of this type are well established in the literature, where it is typical to assume that the underlying geometry is Euclidean. Recent work has explored the consequences of this choice and has motivated the study of models which rely on non-Euclidean latent geometries, with a primary focus on spherical and hyperbolic geometry. In this paper\footnote{This is the first version of this work. Any potential mistake belongs to the first author.}, we examine to what extent latent features can be inferred from the observable links in the network, considering network models which rely on spherical, hyperbolic and lattice geometries. For each geometry, we describe a latent network model, detail constraints on the latent coordinates which remove the well-known identifiability issues, and present schemes for Bayesian estimation. Thus, we develop a computational procedures to perform inference for network models in which the properties of the underlying geometry play a vital role. Furthermore, we access the validity of those models with real data applications.
翻译:丰富的网络模型类别将每个节点与低维潜伏坐标联系起来, 控制连接的倾向。 这种类型的模型在文献中早已确立, 典型的假设基础几何是欧几里德。 最近的工作探讨了这一选择的后果, 并激发了对依赖非欧几里德潜在几何模型的研究, 其主要重点是球形和双曲几何学。 在本文中, 这是这项工作的第一个版本。 任何潜在的错误都属于第一位作者 。 } 我们研究从网络的可观测链接中可以推断出多大程度的潜在特征, 考虑依靠球形、 双曲和拉蒂几色谱的网络模型。 对于每一种地理模型, 我们描述潜在的网络模型, 详细描述潜在坐标的制约, 消除众所周知的可辨性问题, 以及巴伊西亚估算的当前方案。 因此, 我们开发一个计算程序, 以对网络模型进行推算, 其基础几何测量功能发挥关键作用。 此外, 我们获取了这些模型的真实性。