The autoregressive process is one of the fundamental and most important models that analyze a time series. Theoretical results and practical tools for fitting an autoregressive process with i.i.d. innovations are well-established. However, when the innovations are white noise but not i.i.d., those tools fail to generate a consistent confidence interval for the autoregressive coefficients. Focus on an autoregressive process with \textit{dependent} and \textit{non-stationary} innovations, this paper provides a consistent result and a Gaussian approximation theorem for the Yule-Walker estimator. Moreover, it introduces the second order wild bootstrap that constructs a consistent confidence interval for the estimator. Numerical experiments confirm the validity of the proposed algorithm with different kinds of white noise innovations. Meanwhile, the classical method(e.g., AR(Sieve) bootstrap) fails to generate a correct confidence interval when the innovations are dependent. According to Kreiss et al. \cite{10.1214/11-AOS900} and the Wold decomposition, assuming a real-life time series satisfies an autoregressive process is reasonable. However, innovations in that process are more likely to be white noises instead of i.i.d.. Therefore, our method should provide a practical tool that handles real-life problems.
翻译:自动递减进程是分析时间序列的基本和最重要的模型之一。 理论结果和实用工具对于将自动递减进程与i.d. d. 创新是完全成立的。 但是, 当创新是白色噪音, 但不是i. d. 时, 这些工具无法为自动递减系数产生一致的信任间隔。 侧重于带有\ textit{ 依赖} 和\ textit{ 非静止} 的自动递减进程, 本文提供了一个一致的结果, 并为Yulle- Walker 估计器提供了高斯近比近理论。 此外, 它引入了第二顺序野靴圈, 为天顶者构建一个一致的信任间隔。 数值实验证实, 与不同种类的白色噪声创新的拟议算法的有效性。 同时, 经典方法( 例如, AR( ievievey) 无法在创新需要的时候产生正确的信任间隔。 根据 Kreiss et al.\ cite{ 10.12/11- AOS- 90_ 的白色估计, 并且 可能是一个真实的 Rio- decomposition ral ral renceal renceal rences) 。 然而, 可能是一个真正的僵化工具, 而不是一个真正的僵化工具 。 。