The autoregressive process is one of the fundamental and most important models that analyze a time series. Theoretical results and practical tools for fitting an autoregressive process with i.i.d. innovations are well-established. However, when the innovations are white noise but not i.i.d., those tools fail to generate a consistent confidence interval for the autoregressive coefficients. Focus on an autoregressive process with \textit{dependent} and \textit{non-stationary} innovations, this paper provides a consistent result and a Gaussian approximation theorem for the Yule-Walker estimator. Moreover, it introduces the second order wild bootstrap that constructs a consistent confidence interval for the estimator. Numerical experiments confirm the validity of the proposed algorithm with different kinds of white noise innovations. Meanwhile, the classical method(e.g., AR(Sieve) bootstrap) fails to generate a correct confidence interval when the innovations are dependent. According to Kreiss et al. \cite{10.1214/11-AOS900} and the Wold decomposition, assuming a real-life time series satisfies an autoregressive process is reasonable. However, innovations in that process are more likely to be white noises instead of i.i.d.. Therefore, our method should provide a practical tool that handles real-life problems.


翻译:自动递减进程是分析时间序列的基本和最重要的模型之一。 理论结果和实用工具对于将自动递减进程与i.d. d. 创新是完全成立的。 但是, 当创新是白色噪音, 但不是i. d. 时, 这些工具无法为自动递减系数产生一致的信任间隔。 侧重于带有\ textit{ 依赖} 和\ textit{ 非静止} 的自动递减进程, 本文提供了一个一致的结果, 并为Yulle- Walker 估计器提供了高斯近比近理论。 此外, 它引入了第二顺序野靴圈, 为天顶者构建一个一致的信任间隔。 数值实验证实, 与不同种类的白色噪声创新的拟议算法的有效性。 同时, 经典方法( 例如, AR( ievievey) 无法在创新需要的时候产生正确的信任间隔。 根据 Kreiss et al.\ cite{ 10.12/11- AOS- 90_ 的白色估计, 并且 可能是一个真实的 Rio- decomposition ral ral renceal renceal rences) 。 然而, 可能是一个真正的僵化工具, 而不是一个真正的僵化工具 。 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年2月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员