Pre-trained language models have recently advanced abstractive summarization. These models are further fine-tuned on human-written references before summary generation in test time. In this work, we propose the first application of transductive learning to summarization. In this paradigm, a model can learn from the test set's input before inference. To perform transduction, we propose to utilize input document summarizing sentences to construct references for learning in test time. These sentences are often compressed and fused to form abstractive summaries and provide omitted details and additional context to the reader. We show that our approach yields state-of-the-art results on CNN/DM and NYT datasets. For instance, we achieve over 1 ROUGE-L point improvement on CNN/DM. Further, we show the benefits of transduction from older to more recent news. Finally, through human and automatic evaluation, we show that our summaries become more abstractive and coherent.
翻译:培训前语言模型最近已经取得了先进的抽象总结。 这些模型在测试时间进行简要生成之前,对人文参考文献进行了进一步的细微调整。 在这项工作中,我们建议首先应用感化学习来总结。 在这个范例中,一个模型可以在推理之前从测试集的投入中学习。为了进行转换,我们建议使用输入文件来总结句子,以构建测试时间的学习参考文献。这些句子往往被压缩,并结合成抽象总结,向读者提供遗漏的细节和额外的上下文。我们表明,我们的方法产生了CNN/DM和NYT数据集的最新结果。例如,我们在CNN/DM上实现了超过1ROUGE-L点的改进。此外,我们展示了从旧新闻到更近新闻的转换的好处。最后,我们通过人文和自动评价,显示我们的摘要变得更加抽象和一致。