We propose new preconditioned iterative solvers for linear systems arising in primal-dual interior point methods for convex quadratic programming problems. These preconditioned conjugate gradient methods operate on an implicit Schur complement of the KKT system at each iteration. In contrast to standard approaches, the Schur complement we consider enables the reuse of the factorization of the Hessian of the equality-constraint Lagrangian across all interior point iterations. Further, the resulting reduced system admits preconditioners that directly alleviate the ill-conditioning associated with the strict complementarity condition in interior point methods. The two preconditioners we propose also provably reduce the number of unique eigenvalues for the coefficient matrix (CG iteration count). One is efficient when the number of equality constraints is small, while the other is efficient when the number of remaining degrees of freedom is small. Numerical experiments with synthetic problems and problems from the Maros-M\'esz\'aros QP collection show that our preconditioned inexact interior point solvers are effective at improving conditioning and reducing cost. Across all test problems for which the direct method is not fastest, our preconditioned methods achieve a reduction in cost by a geometric mean of 1.432 relative to the best alternative preconditioned method for each problem.


翻译:我们为线性系统提出了新的具有先决条件的迭代解决方案。这些具有先决条件的梯度方法在每次迭代中以KKT系统的隐含Schur补充形式运作。与标准方法不同,我们认为Schur补充能够使赫西安平等限制拉格朗吉恩人在所有内点的迭代中重新利用平等限制程度的乘数。此外,由此而来,减少的系统承认了能够直接缓解与内点方法的严格互补条件有关的不适应条件的前提条件。我们提议的两个先决条件还能够明显减少系数矩阵(CG迭代计数)独有的艾金价值的数量。当平等限制的数量很小时,一种是有效的,而另一种则是在所有内点中点的合成问题和马罗斯-M\esz\'arrares QP收藏中的问题的内端实验表明,我们所具备先决条件的内点解决方案在改善和降低成本方面是有效的。在每种代数前期方法中,一种是最佳的降低方法,一种是最佳的相对的前提条件,一种是最佳降低方法。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年12月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月16日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年12月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员