A major problem in numerical weather prediction (NWP) is the estimation of high-dimensional covariance matrices from a small number of samples. Maximum likelihood estimators cannot provide reliable estimates when the overall dimension is much larger than the number of samples. Fortunately, NWP practitioners have found ingenious ways to boost the accuracy of their covariance estimators by leveraging the assumption that the correlations decay with spatial distance. In this work, Bayesian statistics is used to provide a new justification and analysis of the practical NWP covariance estimators. The Bayesian framework involves manipulating distributions over symmetric positive definite matrices, and it leads to two main findings: (i) the commonly used "hybrid estimator" for the covariance matrix has a naturally Bayesian interpretation; (ii) the very commonly used "Schur product estimator" is not Bayesian, but it can be studied and understood within the Bayesian framework. As practical implications, the Bayesian framework shows how to reduce the amount of tuning required for covariance estimation, and it suggests that efficient covariance estimation should be rooted in understanding and penalizing conditional correlations, rather than correlations.


翻译:数字天气预测(NWP)的一个主要问题是从少数样本中估算高维共变矩阵。当总体尺寸大大大于样本数量时,最大概率估计者无法提供可靠的估计。幸运的是,NWP从业人员发现一些奇特的方法,利用相关关系与空间距离衰减的假设,提高了共变估计者的准确性。在这项工作中,巴耶斯统计用于为实际的NWP共变估计者提供新的理由和分析。贝叶斯框架涉及对正对正确定矩阵进行操纵分布,它导致两个主要结论:(一)常使用的共变矩阵“混合估计者”具有自然的巴耶斯解释;(二)常用的“Schur产品估计者”不是拜耶斯人,但可在Bayesian框架内加以研究和理解。作为实际影响,Bayesian框架表明如何减少对对正对正确定矩阵的调整量,并导致两个主要结论:(一)常用“混合估计者”具有自然的巴耶斯解释;(二)通常使用的“Schur产品估计者”不是拜斯人,但可在Bayesian框架内加以研究和理解。作为实际影响,Bayesian框架表明如何减少对调度估计所需的数量,它,它意味着有效的相互之间应植根基。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
14+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月3日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
14+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员