Quantiles of a natural phenomena can provide scientists with an important understanding of typical, extreme, or other spreads of concentrations. When a group has several available robots, or teams of scientists come together to study a particular environment, it may be advantageous to pool robot resources in a collaborative way to improve performance. A multirobot team can be difficult to practically bring together and coordinate, especially when robot communication is involved. To this end, we present a study across several axes of the impact of using multiple robots to estimate quantiles of a distribution of interest using an informative path planning formulation. We measure quantile estimation accuracy with increasing team size to understand what benefits result from a multirobot approach in a drone exploration task of analyzing the algae concentration in lakes. We additionally perform an analysis on several parameters, including the spread of robot initial positions, the planning budget, and inter-robot communication, and find that while using more robots generally results in lower estimation error, this benefit is achieved under certain conditions. We present our findings in the context of real field robotic applications and discuss the implications of the results and interesting directions for future work.
翻译:自然现象的量子可以使科学家对典型的、极端的或其他的浓度分布有重要的了解。当一个群体拥有数个可用的机器人或科学家团队聚集在一起研究特定环境时,以协作的方式集合机器人资源可能是有益的。一个多机器人团队可能难以实际地汇集和协调,特别是在机器人通信涉及的情况下。为此,我们提出一个跨几个轴的研究,研究使用多个机器人使用信息化路径规划公式估计利益分配的量化的影响。我们用越来越多的团队规模来衡量量化估计准确性,以了解在分析湖藻浓度的无人机探索任务中采用多机器人方法产生什么效益。我们进一步分析若干参数,包括机器人初始位置的分布、规划预算和机器人间机器人通信,发现在使用更多机器人通常导致低估计错误的同时,在某些条件下,这种效益是取得的。我们从实际实地机器人应用的角度提出我们的调查结果,并讨论结果的影响和对未来工作的有趣方向。</s>