We extend the hypocoercivity framework for piecewise-deterministic Markov process (PDMP) Monte Carlo established in [Andrieu et. al. (2018)] to heavy-tailed target distributions, which exhibit subgeometric rates of convergence to equilibrium. We make use of weak Poincar\'e inequalities, as developed in the work of [Grothaus and Wang (2019)], the ideas of which we adapt to the PDMPs of interest. On the way we report largely potential-independent approaches to bounding explicitly solutions of the Poisson equation of the Langevin diffusion and its first and second derivatives, required here to control various terms arising in the application of the hypocoercivity result.


翻译:我们把在[Andrieu等人(2018年) 建立的Papidocol(PDMP)Monte Carlo(PDMP)程序(PDMP)的低胁迫性框架扩大到重尾目标分布,这些分布显示出与均衡相趋同的亚几何率。我们利用了[Grothaus和Wang(2019年) 工作中形成的薄弱的Poincar(Pincar)不平等,我们对这些不平等的想法进行了调整以适应人们感兴趣的PDMP。我们报告的方式是,我们报告对Langevin扩散的Poisson等式及其第一和第二衍生物的明确解决方案进行约束的潜在独立方法,这里需要控制在应用低连接结果时产生的各种条件。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月18日
Arxiv
0+阅读 · 2021年6月18日
Arxiv
0+阅读 · 2021年6月15日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员