Bayesian phylogenetic inference is often conducted via local or sequential search over topologies and branch lengths using algorithms such as random-walk Markov chain Monte Carlo (MCMC) or Combinatorial Sequential Monte Carlo (CSMC). However, when MCMC is used for evolutionary parameter learning, convergence requires long runs with inefficient exploration of the state space. We introduce Variational Combinatorial Sequential Monte Carlo (VCSMC), a powerful framework that establishes variational sequential search to learn distributions over intricate combinatorial structures. We then develop nested CSMC, an efficient proposal distribution for CSMC and prove that nested CSMC is an exact approximation to the (intractable) locally optimal proposal. We use nested CSMC to define a second objective, VNCSMC which yields tighter lower bounds than VCSMC. We show that VCSMC and VNCSMC are computationally efficient and explore higher probability spaces than existing methods on a range of tasks.
翻译:贝叶斯遗传学推论往往通过对地形和分支长度进行本地或连续的搜索,使用随机行走的马尔科夫链蒙特卡洛(MCMC)或混合序列蒙特卡洛(CMC)等算法进行。然而,当MCMC用于进化参数学习时,趋同需要长长而低效地探索国家空间。我们引入了变式组合序列蒙特卡洛(VCSMC)这一强大的框架,建立变式序列搜索,以了解复杂组合结构的分布。我们随后开发了嵌巢式的CSMC(CSMC),为CSMC(CSMC)提供了有效的建议分发,并证明嵌套式的CSMC(CSMC)是(可吸引的)当地最佳建议的精确近似近。我们使用嵌套式的CSMC(VNCSMC)来定义第二个目标,即VCSMC(VCSMC)的下限比VCSMC(VCSMC)更近。我们表明,VCSMC(VCSMC)和VCSMC(VCSMC)在一系列任务上具有计算效率和探索比现有方法更高的概率空间。