Quantum channel capacity is a fundamental quantity in order to understand how good can quantum information be transmitted or corrected when subjected to noise. However, it is generally not known how to compute such quantities, since the quantum channel coherent information is not additive for all channels, implying that it must be maximized over an unbounded number of channel uses. This leads to the phenomenon known as superadditivity, which refers to the fact that the regularized coherent information of $n$ channel uses exceeds one-shot coherent information. In this letter, we study how the gain in quantum capacity of qudit depolarizing channels relates to the dimension of the systems considered. We make use of an argument based on the no-cloning bound in order to proof that the possible superaditive effects decrease as a function of the dimension for such family of channels. In addition, we prove that the capacity of the qudit depolarizing channel coincides with the coherent information when $d\rightarrow\infty$. We conclude that when high dimensional qudits experiencing depolarizing noise are considered, the coherent information of the channel is not only an achievable rate but essentially the maximum possible rate for any quantum block code.


翻译:量子信道能力是一个基本数量,以便了解在受到噪音影响时,数量信息能如何很好地传播或纠正;然而,一般不知道如何计算此类数量,因为量子通道的一致性信息并不是所有渠道的添加物,意味着必须在无限制数量的频道使用量上将其最大化。这导致被称为超增加性的现象,即美元频道使用量的正常一致信息超过一分一致的信息。我们在本信中研究赤道分解渠道数量能力的增益如何与所考虑的系统层面相关。我们利用基于无线连接的论据,以证明作为这种频道系列的一个维度功能,可能存在的超增加效应减少。此外,我们证明,在美元-右线-rowloor-infty美元时,离子通道的能力与一致的信息相吻合。我们的结论是,当高维度分解离层的频道的量能力增加量能力与所考虑的系统层面有关。我们利用基于无线约束的参数进行论证,以证明可能的超量效应降低,作为这种频道的维度功能的功能功能功能。此外,我们证明,当美元-右线-线-infty 美元-fty 美元使用时,当出现分解离噪噪噪音时,该频道的一致数据时,并非任何可实现的最高比例。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
11+阅读 · 2018年5月13日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员