Causal inference necessarily relies upon untestable assumptions; hence, it is crucial to assess the robustness of obtained results to violations of identification assumptions. However, such sensitivity analysis is only occasionally undertaken in practice, as many existing methods only apply to relatively simple models and their results are often difficult to interpret. We take a more flexible approach to sensitivity analysis and view it as a constrained stochastic optimization problem. We focus on linear models with an unmeasured confounder and a potential instrument. We show how the $R^2$-calculus - a set of algebraic rules that relates different (partial) $R^2$-values and correlations - can be applied to identify the bias of the $k$-class estimators and construct sensitivity models flexibly. We further show that the heuristic "plug-in" sensitivity interval may not have any confidence guarantees; instead, we propose a boostrap approach to construct sensitivity intervals which perform well in numerical simulations. We illustrate the proposed methods with a real study on the causal effect of education on earnings and provide user-friendly visualization tools.


翻译:因果关系推断必然取决于无法检验的假设;因此,评估在违反身份认定假设的情况下所取得的结果是否可靠至关重要;然而,这种敏感性分析只是偶尔在实践中进行,因为许多现有方法只适用于相对简单的模型,其结果往往难以解释;我们对敏感性分析采取更灵活的方法,并将它视为一个有限的随机优化问题;我们注重线性模型,而没有测算的混淆者和潜在的工具;我们展示的是,如何能够应用2美元计算法——一套与不同(部分)2美元价值和相关性有关的代数规则——来查明美元类估计值和相关性的偏向性,并灵活地构建敏感度模型;我们进一步表明,超常性“插入”敏感性间隔可能没有任何信心保证;相反,我们提议一种加速法,以构建敏感度间隔,在数字模拟中表现良好。我们用真实研究教育对收入的因果关系和提供方便用户的可视化工具来说明拟议的方法。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员