Clustering with capacity constraints is a fundamental problem that attracted significant attention throughout the years. In this paper, we give the first FPT constant-factor approximation algorithm for the problem of clustering points in a general metric into $k$ clusters to minimize the sum of cluster radii, subject to non-uniform hard capacity constraints. In particular, we give a $(15+\epsilon)$-approximation algorithm that runs in $2^{0(k^2\log k)}\cdot n^3$ time. When capacities are uniform, we obtain the following improved approximation bounds: A (4 + $\epsilon$)-approximation with running time $2^{O(k\log(k/\epsilon))}n^3$, which significantly improves over the FPT 28-approximation of Inamdar and Varadarajan [ESA 2020]; a (2 + $\epsilon$)-approximation with running time $2^{O(k/\epsilon^2 \cdot\log(k/\epsilon))}dn^3$ and a $(1+\epsilon)$-approximation with running time $2^{O(kd\log ((k/\epsilon)))}n^{3}$ in the Euclidean space; and a (1 + $\epsilon$)-approximation in the Euclidean space with running time $2^{O(k/\epsilon^2 \cdot\log(k/\epsilon))}dn^3$ if we are allowed to violate the capacities by (1 + $\epsilon$)-factor. We complement this result by showing that there is no (1 + $\epsilon$)-approximation algorithm running in time $f(k)\cdot n^{O(1)}$, if any capacity violation is not allowed.
翻译:能力限制是多年来引起人们极大关注的一个根本性问题。 在本文中, 我们给出了第一个以美元为单位的 FPT 常数- 系数近似算法, 以将一般公吨中的组点问题分组成 $k$ 组群, 以最小化 radai 集的总和, 但要有非统一硬容量限制 。 特别是, 我们给出了 $( 15 <unk> epsilon) 的配比算法, 运行于 $0( k2\ 2\ log k) ; 能力统一时, 我们得到了以下改进的近似值 : A ( 4 + $\ 美元), 以运行时间为 $( $2\ =x% 美元) 运行时间( 美元/ 美元) 运行时间( 美元/ 美元) 运行时间( 1\\\\\\ 美元/ 美元) 运行时间( 美元/ 美元) 运行时间( 美元) 运行中( 美元/ 美元) 美元/ 美元) 运行中( 美元/ 美元=xxxxxxxxxxxx) 运行中( 时间) 运行中( 运行中( 美元) 运行中( 美元) 美元) 运行中( 美元/ 美元) 美元)</s>