In Bayesian probabilistic programming, a central problem is to estimate the normalised posterior distribution (NPD) of a probabilistic program with conditioning. Prominent approximate approaches to address this problem include Markov chain Monte Carlo and variational inference, but neither can generate guaranteed outcomes within limited time. Moreover, most existing formal approaches that perform exact inference for NPD are restricted to programs with closed-form solutions or bounded loops/recursion. A recent work (Beutner et al., PLDI 2022) derived guaranteed bounds for NPD over programs with unbounded recursion. However, as this approach requires recursion unrolling, it suffers from the path explosion problem. Furthermore, previous approaches do not consider score-recursive probabilistic programs that allow score statements inside loops, which is non-trivial and requires careful treatment to ensure the integrability of the normalising constant in NPD. In this work, we propose a novel automated approach to derive bounds for NPD via polynomial templates. Our approach can handle probabilistic programs with unbounded while loops and continuous distributions with infinite supports. The novelties in our approach are three-fold: First, we use polynomial templates to circumvent the path explosion problem from recursion unrolling; Second, we derive a novel multiplicative variant of Optional Stopping Theorem that addresses the integrability issue in score-recursive programs; Third, to increase the accuracy of the derived bounds via polynomial templates, we propose a novel technique of truncation that truncates a program into a bounded range of program values. Experiments over a wide range of benchmarks demonstrate that our approach is time-efficient and can derive bounds for NPD that are comparable with (or tighter than) the recursion-unrolling approach (Beutner et al., PLDI 2022).
翻译:暂无翻译