Disease risk models can identify high-risk patients and help clinicians provide more personalized care. However, risk models developed on one dataset may not generalize across diverse subpopulations of patients in different datasets and may have unexpected performance. It is challenging for clinical researchers to inspect risk models across different subgroups without any tools. Therefore, we developed an interactive visualization system called RMExplorer (Risk Model Explorer) to enable interactive risk model assessment. Specifically, the system allows users to define subgroups of patients by selecting clinical, demographic, or other characteristics, to explore the performance and fairness of risk models on the subgroups, and to understand the feature contributions to risk scores. To demonstrate the usefulness of the tool, we conduct a case study, where we use RMExplorer to explore three atrial fibrillation risk models by applying them to the UK Biobank dataset of 445,329 individuals. RMExplorer can help researchers to evaluate the performance and biases of risk models on subpopulations of interest in their data.
翻译:疾病风险模型可以确定高风险病人,帮助临床医生提供更个性化的护理;然而,在一个数据集上开发的风险模型可能无法在不同数据集中对病人的不同亚群群进行概括,而且可能具有出乎意料的性能;临床研究人员在没有任何工具的情况下检查不同分组的风险模型是具有挑战性的;因此,我们开发了一个称为RMExplorerer(风险模型探索者)的互动可视化系统,以便能够进行互动的风险模型评估;具体地说,该系统允许用户通过选择临床、人口或其他特征来界定病人分组,以探索各分组风险模型的性能和公平性,并了解对风险分数的特征贡献;为了展示该工具的有用性,我们开展了一项案例研究,即我们利用RMExplorer(RMExplorer)来探索三个工序纤维化风险模型,将其应用到由445 329名个人组成的英国生物银行数据集中;RMExtor(RMExplorer)可以帮助研究人员评估其数据中有兴趣的子群的风险模型的性能和偏向。