Graph Neural Networks (GNNs) have achieved great success among various domains. Nevertheless, most GNN methods are sensitive to the quality of graph structures. To tackle this problem, some studies exploit different graph structure learning strategies to refine the original graph structure. However, these methods only consider feature information while ignoring available label information. In this paper, we propose a novel label-informed graph structure learning framework which incorporates label information explicitly through a class transition matrix. We conduct extensive experiments on seven node classification benchmark datasets and the results show that our method outperforms or matches the state-of-the-art baselines.
翻译:神经网络图(GNNs)在不同领域取得了巨大成功,然而,大多数GNN方法都对图形结构的质量十分敏感。为解决这一问题,一些研究利用不同的图形结构学习战略来完善原始图形结构。然而,这些方法只考虑特征信息,而忽略现有的标签信息。在本文中,我们提出一个新的标签知情图形结构学习框架,通过等级转换矩阵明确纳入标签信息。我们在七个节点分类基准数据集上进行了广泛的实验,结果显示我们的方法优于或符合最先进的基线。