Owing to the rapid development of sensor technology, hyperspectral (HS) remote sensing (RS) imaging has provided a significant amount of spatial and spectral information for the observation and analysis of the Earth's surface at a distance of data acquisition devices, such as aircraft, spacecraft, and satellite. The recent advancement and even revolution of the HS RS technique offer opportunities to realize the full potential of various applications, while confronting new challenges for efficiently processing and analyzing the enormous HS acquisition data. Due to the maintenance of the 3-D HS inherent structure, tensor decomposition has aroused widespread concern and research in HS data processing tasks over the past decades. In this article, we aim at presenting a comprehensive overview of tensor decomposition, specifically contextualizing the five broad topics in HS data processing, and they are HS restoration, compressed sensing, anomaly detection, super-resolution, and spectral unmixing. For each topic, we elaborate on the remarkable achievements of tensor decomposition models for HS RS with a pivotal description of the existing methodologies and a representative exhibition on the experimental results. As a result, the remaining challenges of the follow-up research directions are outlined and discussed from the perspective of the real HS RS practices and tensor decomposition merged with advanced priors and even with deep neural networks. This article summarizes different tensor decomposition-based HS data processing methods and categorizes them into different classes from simple adoptions to complex combinations with other priors for the algorithm beginners. We also expect this survey can provide new investigations and development trends for the experienced researchers who understand tensor decomposition and HS RS to some extent.
翻译:由于传感器技术的迅速发展,超光谱(HS)遥感(RS)成像提供了大量空间和光谱信息,用于对地球表面进行远距离的数据采集设备,如飞机、航天器和卫星等进行观测和分析。最近HSRS技术的进步,甚至革命,为充分发挥各种应用的潜力提供了机会,同时在高效处理和分析巨大的HS获取数据方面面临新的挑战。由于保持3DHS固有结构,过去几十年来,高频分解已引起对HS数据处理任务的广泛关切和研究。在文章中,我们的目标是全面概述高频分解位置,具体介绍HS数据处理的五个广泛主题,这些是HS系统技术的更新、压缩感测、异常检测、超分辨率和光谱混杂。关于每个专题,我们详细介绍了基于HSRS的高压分解模型的显著成就,对现有方法作了关键的描述,并举办了关于实验结果的有代表性的展览。因此,目前对高频分位的分解状态,我们还从这一后期研究趋势,从S的先期研究方向,从S的先期研究方向,从S的先期研究方向,从S的先期研究到后期分析,从S的先期分析到后期分析到后期分析,从S的先期分析到后期分析,再分析,再分析,再分析,再分析,再分析,再分析,再分析,再分析,从S的深度分析,再分析,再分析,再分析,再分析,再分析,从前的深度分析,再分析,再分析,再分析,再分析,再分析,再分析,再分析,再分析,再分析,再分析,再分析,再分析,再分析,再分析,再分析。