The recovery of signals that are sparse not in a basis, but rather sparse with respect to an over-complete dictionary is one of the most flexible settings in the field of compressed sensing with numerous applications. As in the standard compressed sensing setting, it is possible that the signal can be reconstructed efficiently from few, linear measurements, for example by the so-called $\ell_1$-synthesis method. However, it has been less well-understood which measurement matrices provably work for this setting. Whereas in the standard setting, it has been shown that even certain heavy-tailed measurement matrices can be used in the same sample complexity regime as Gaussian matrices, comparable results are only available for the restrictive class of sub-Gaussian measurement vectors as far as the recovery of dictionary-sparse signals via $\ell_1$-synthesis is concerned. In this work, we fill this gap and establish optimal guarantees for the recovery of vectors that are (approximately) sparse with respect to a dictionary via the $\ell_1$-synthesis method from linear, potentially noisy measurements for a large class of random measurement matrices. In particular, we show that random measurements that fulfill only a small-ball assumption and a weak moment assumption, such as random vectors with i.i.d. Student-$t$ entries with a logarithmic number of degrees of freedom, lead to comparable guarantees as (sub-)Gaussian measurements. Our results apply for a large class of both random and deterministic dictionaries. As a corollary of our results, we also obtain a slight improvement on the weakest assumption on a measurement matrix with i.i.d. rows sufficient for uniform recovery in standard compressed sensing, improving on results by Mendelson and Lecu\'e and Dirksen, Lecu\'e and Rauhut.


翻译:信号的恢复不是在基础上少见,而是在不完整的字典上少少见的信号的恢复是使用多种应用的压缩感测领域最灵活的随机性环境之一。与标准的压缩感测环境一样,该信号有可能从少数线性测量中有效地重建,例如所谓的 $\ell_1$-合成法。然而,我们没有很好地理解哪些测量矩阵可以为这一设置进行可探测的工作。在标准设置中,甚至某些重尾测量矩阵也可以在与高斯矩阵相同的抽样复杂系统中使用。与标准压缩感测领域一样,某些重尾量测量矩阵也可以用于与高斯矩阵矩阵相同的抽样复杂系统中。与标准值测量相比,只有限级的伽西亚测量矢量才能高效地重建信号。在这项工作中,我们填补了这一缺口,并为矢量的恢复建立了最佳保障,通过 以美元_1美元- 美元- 合成法方法从线性自由度、 可能调低的测量结果, 以及大量随机度测算结果。 具体地,我们只能通过一个随机测算的轨道进行这种结果。

0
下载
关闭预览

相关内容

压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目。 compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意。 与稀疏表示不同,压缩感知关注的是如何利用信号本身所具有的稀疏性,从部分观测样本中恢复原信号。
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
手把手教你用LDA特征选择
AI研习社
12+阅读 · 2017年8月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月13日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
领域自适应学习论文大列表
专知
71+阅读 · 2019年3月2日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
手把手教你用LDA特征选择
AI研习社
12+阅读 · 2017年8月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员