This paper deals with the extreme value analysis for the triangular arrays, which appear when some parameters of the mixture model vary as the number of observations grow. When the mixing parameter is small, it is natural to associate one of the components with "an impurity" (in case of regularly varying distribution, "heavy-tailed impurity"), which "pollutes" another component. We show that the set of possible limit distributions is much more diverse than in the classical Fisher-Tippett-Gnedenko theorem, and provide the numerical examples showing the efficiency of the proposed model for studying the maximal values of the stock returns.
翻译:本文涉及三角阵列的极端值分析, 当混合物模型的某些参数随观测次数的增加而变化时, 就会出现极端值分析。 当混合参数很小时, 自然会将一个部件与“ 杂质” (在经常不同分布的情况下, “ 重尾杂质 ” ) 联系起来, 而“ 杂质 ” 又是“ 污染物 ” 。 我们显示, 一套可能的极限分布比经典的Fisher-Tippet- Gnedenko 理论要多样化得多, 并提供数字示例, 显示为研究股票回报的最大值而提议的模型的效率 。