We propose a novel Bayesian framework for the joint modeling of survey point and variance estimates for count data. The approach incorporates an induced prior distribution on the modeled true variance that sets it equal to the generating variance of the point estimate, a key property more readily achieved for continuous data response type models. Our count data model formulation allows the input of domains at multiple resolutions (e.g., states, regions, nation) and simultaneously benchmarks modeled estimates at higher resolutions (e.g., states) to those at lower resolutions (e.g., regions) in a fashion that borrows more strength to sharpen our domain estimates at higher resolutions. We conduct a simulation study that generates a population of units within domains to produce ground truth statistics to compare to direct and modeled estimates performed on samples taken from the population where we show improved reductions in error across domains. The model is applied to the job openings variable and other data items published in the Job Openings and Labor Turnover Survey administered by the U.S. Bureau of Labor Statistics.
翻译:我们为计算数据调查点和差异估计数的联合建模提出了一个新的贝叶西亚框架,该方法包含一个对模型真实差异的预先促发,使模型真实差异与点数估计的差异相等,这是持续数据响应型模型较容易实现的关键属性。我们的计数数据模型编制工作允许在多个分辨率(例如州、地区、国家)上输入领域,同时将高分辨率(例如州)和低分辨率(例如地区)的模型估计数作为基准,以借力提高高分辨率的域数估计数。我们进行了模拟研究,生成了各域内的单位群,以产生地面真相统计数据,与从我们显示各领域差数减少的抽样中得出的直接估计数和模型估计数进行比较。该模型适用于职务空缺变量以及由美国劳工统计局管理的劳动力更替调查公布的其他数据项目。