Various parametric models have been developed to predict large volatility matrices, based on the approximate factor model structure. They mainly focus on the dynamics of the factor volatility with some finite high-order moment assumptions. However, the empirical studies have shown that the idiosyncratic volatility also has a dynamic structure and it comprises a large proportion of the total volatility. Furthermore, we often observe that the financial market exhibits heavy tails. To account for these stylized features in financial returns, we introduce a novel It\^{o} diffusion process for both factor and idiosyncratic volatilities whose eigenvalues follow the vector auto-regressive (VAR) model. We call it the factor and idiosyncratic VAR-It\^{o} (FIVAR-It\^o) model. To handle the heavy-tailedness and curse of dimensionality, we propose a robust parameter estimation method for a high-dimensional VAR model. We apply the robust estimator to predicting large volatility matrices and investigate its asymptotic properties. Simulation studies are conducted to validate the finite sample performance of the proposed estimation and prediction methods. Using high-frequency trading data, we apply the proposed method to large volatility matrix prediction and minimum variance portfolio allocation and showcase the new model and the proposed method.


翻译:开发了各种参数模型,以预测基于大致要素模型结构的大型波动矩阵,主要侧重于因子波动的动态动态,有一定的高度瞬间假设,但实证研究表明,特异性波动也具有动态结构,它占总波动的很大比例。此外,我们经常观察到金融市场的尾巴很重。为了说明金融回报中的这些结构化特点,我们为因子和特异性综合挥发性引入了一个新型的It ⁇ o}扩散过程,其值随矢量自动递增模式而增加。我们称之为因子和特异性VAR-It ⁇ o}(FIVAR-It ⁇ o)模型。为了处理重尾尾尾部和对维度的诅咒,我们为高维度VAR模型提出了一种强的参数估计方法。我们运用了强有力的估计方法来预测大型波动矩阵,并调查其是否具有湿度特性。我们进行了模拟研究,以验证拟议的大规模交易模型性VAR-Itro)模型业绩,并采用拟议的最低变异性预测方法。

0
下载
关闭预览

相关内容

最新《时序分类:深度序列模型》教程,172页ppt
专知会员服务
42+阅读 · 2020年11月11日
专知会员服务
52+阅读 · 2020年9月7日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2019年11月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
3+阅读 · 2015年5月16日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
最新《时序分类:深度序列模型》教程,172页ppt
专知会员服务
42+阅读 · 2020年11月11日
专知会员服务
52+阅读 · 2020年9月7日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
4+阅读 · 2019年11月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员