In ecology it is common for processes to be bounded based on physical constraints of the system. One common example is the positivity constraint, which applies to phenomena such as duration times, population sizes, and total stock of a system's commodity. In this paper, we propose a novel method for embedding these dynamical systems into a lognormal state space model using an approach based on moment matching. Our method enforces the positivity constraint, allows for embedding of arbitrary mean evolution and variance structure, and has a closed-form Markov transition density which allows for more flexibility in fitting techniques. We discuss two existing lognormal state space models, and examine how they differ from the method presented here. We use 180 synthetic datasets to compare the forecasting performance under model misspecification and assess estimability of precision parameters between our method and existing methods. We find that our models well under misspecification, and that fixing the observation variance both helps to improve estimation of the process variance and improves forecast performance. To test our method on a difficult problem, we compare the predictive performance of two lognormal state space models in predicting Leaf Area Index over a 151 day horizon by embedding a process-based ecosystem model. We find that our moment matching model performs better than its competitor, and is better suited for long predictive horizons. Overall, our study helps to inform practitioners about the importance of embedding sensible dynamics when using models complex systems to predict out of sample.


翻译:在生态学中,基于系统物理限制的流程受约束是常见的。一个常见的例子是,实实在在的制约,它适用于期限时间、人口规模和系统商品总存量等现象。在本文中,我们提出一种新颖的方法,用基于时间匹配的方法将这些动态系统嵌入对称状态空间模型中。我们的方法强制实施假设限制,允许嵌入任意的中值进化和差异结构,并有一个封闭式的马尔科夫过渡密度,允许在安装技术方面有更大的灵活性。我们讨论两种现有的对称状态空间模型,并研究它们与这里介绍的方法有何不同之处。我们用180个合成数据集来比较模型分辨的预测性,并评估我们方法和现有方法之间精确参数的可估计性。我们发现,我们的模型在使用基于时间匹配的生态系统预测系统,从而改进对过程差异的估算,改进预测性绩效。为了测试我们的方法,我们比较了两种对正统状态空间模型的预测性表现,以预测利夫地区模型的模型在15天内的重要性,我们通过安装一个更精确的生态系统的预测性研究,我们用更精确的系统来进行更精确的预测。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
12+阅读 · 2021年6月29日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员