We consider the directed minimum weight cycle problem in the fully dynamic setting. To the best of our knowledge, so far no fully dynamic algorithms have been designed specifically for the minimum weight cycle problem in general digraphs. One can achieve $\tilde{O}(n^2)$ amortized update time by simply invoking the fully dynamic APSP algorithm of Demetrescu and Italiano [J. ACM'04]. This bound, however, yields no improvement over the trivial recompute-from-scratch algorithm for sparse graphs. Our first contribution is a very simple deterministic $(1+\epsilon)$-approximate algorithm supporting vertex updates (i.e., changing all edges incident to a specified vertex) in conditionally near-optimal $\tilde{O}(m\log{(W)}/\epsilon)$ amortized time for digraphs with real edge weights in $[1,W]$. Using known techniques, the algorithm can be implemented on planar graphs and also gives some new sublinear fully dynamic algorithms maintaining approximate cuts and flows in planar digraphs. Additionally, we show a Monte Carlo randomized exact fully dynamic minimum weight cycle algorithm with $\tilde{O}(mn^{2/3})$ worst-case update that works for real edge weights. To this end, we generalize the exact fully dynamic APSP data structure of Abraham et al. [SODA'17] to solve the ``multiple-pairs shortest paths problem'', where one is interested in computing distances for some $k$ (instead of all $n^2$) fixed source-target pairs after each update. We show that in such a scenario, $\tilde{O}((m+k)n^{2/3})$ worst-case update time is possible.


翻译:我们认为完全动态环境中的最小重量周期问题。 据我们所知, 目前还没有一个完全动态的算法, 专门为一般测算中的最低重量周期问题设计了完全动态的算法 。 在有条件的近于最优化的 美元=O}( m\log{(W)}) 和意大利[ACM'04] 的 APSP 算法中, 能够实现 $( 1 ⁇ epsilon) 的摊算法。 然而, 与对稀释图形的微小重重解算法相比, 我们的第一个贡献是非常简单的确定性 $( 1 ⁇ 3) $($- 3) 的近似算法。 支持顶点更新( e. 将所有边缘事件改变为指定的顶点) $( O} (n) (m\ log{w) /\ eepsilonal) 的调时段。 使用已知的技术, 直线性算法可以在平面图表上执行, 也给一些新的基底基数 美元=xal=xal=xal=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
专知会员服务
30+阅读 · 2020年12月14日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年8月23日
VIP会员
相关VIP内容
最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
专知会员服务
30+阅读 · 2020年12月14日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员