We consider a natural generalization of the Steiner tree problem, the Steiner forest problem, in the Euclidean plane: the input is a multiset $X \subseteq \mathbb{R}^2$, partitioned into $k$ color classes $C_1, C_2, \ldots, C_k \subseteq X$. The goal is to find a minimum-cost Euclidean graph $G$ such that every color class $C_i$ is connected in $G$. We study this Steiner forest problem in the streaming setting, where the stream consists of insertions and deletions of points to $X$. Each input point $x\in X$ arrives with its color $\mathsf{color}(x) \in [k]$, and as usual for dynamic geometric streams, the input points are restricted to the discrete grid $\{0, \ldots, \Delta\}^2$. We design a single-pass streaming algorithm that uses $\mathrm{poly}(k \cdot \log\Delta)$ space and time, and estimates the cost of an optimal Steiner forest solution within ratio arbitrarily close to the famous Euclidean Steiner ratio $\alpha_2$ (currently $1.1547 \le \alpha_2 \le 1.214$). Our approach relies on a novel combination of streaming techniques, like sampling and linear sketching, with the classical dynamic-programming framework for geometric optimization problems, which usually requires large memory and has so far not been applied in the streaming setting. We complement our streaming algorithm for the Steiner forest problem with simple arguments showing that any finite approximation requires $\Omega(k)$ bits of space. In addition, our approximation ratio is currently the best even for streaming Steiner tree, i.e., $k=1$.


翻译:我们考虑将施泰纳树问题,即施泰纳森林问题自然概括化为斯泰纳树问题,在Euclidean平面中,我们研究的是施泰纳森林问题:输入是一个多立方美元=subseteque =mathbb{R ⁇ 2美元:输入是一个多立方美元=x subseteqeqe $C_1,C_2,C_k=subsetequex美元。我们的目标是找到一个最低成本的 Euclidean 图形 $G$(美元),每个彩色等级$C_i i 。我们研究的是Steina森林问题,每个输入点$Xx=xxxxxxxxx美元 彩色= 美元,作为动态几立体流的常规,输入的是离电网$0, eldototo2$2$。我们设计一个使用 $\mathrm{poly 的单一流算法, rodeal dreal droom exal_mail exal droup ex exlation ex ex ex exl laus mess laus mess lax laxxxxl_xxl_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年5月12日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月8日
Arxiv
12+阅读 · 2021年3月24日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员