In this paper, we provide a dissipative Hamiltonian (DH) characterization for the set of matrices whose eigenvalues belong to a given LMI region. This characterization is a generalization of that of Choudhary et al. (Numer. Linear Algebra Appl., 2020) to any LMI region. It can be used in various contexts, which we illustrate on the nearest $\Omega$-stable matrix problem: given an LMI region $\Omega \subseteq \mathbb{C}$ and a matrix $A \in \mathbb{C}^{n,n}$, find the nearest matrix to $A$ whose eigenvalues belong to $\Omega$. Finally, we generalize our characterization to more general regions that can be expressed using LMIs involving complex matrices.
翻译:在本文中,我们为一组其精华值属于某个LMI区域的矩阵提供了分散式的汉密尔顿仪(DH)特征描述,这种特征描述将Choudhary等人(Numer. Linear Algebra Appl.,2020年)的特征概括到任何LMI区域,可以用于各种背景,我们用最接近的美元来说明稳定的矩阵问题:考虑到LMI区域$\Omega\subseteq\mathbb{C}$和一个总库$A\in\mathbb{C ⁇ n,n}$,找到最接近于$A$的矩阵,其精华值属于$\Omega$。最后,我们将我们的特征描述概括到更普通的区域,可以用涉及复杂矩阵的LMIs表示。