We define a computational type theory combining the contentful equality structure of cartesian cubical type theory with internal parametricity primitives. The combined theory supports both univalence and its relational equivalent, which we call relativity. We demonstrate the use of the theory by analyzing polymorphic functions between higher inductive types, observe how cubical equality regularizes parametric type theory, and examine the similarities and discrepancies between cubical and parametric type theory, which are closely related. We also abstract a formal interface to the computational interpretation and show that this also has a presheaf model.
翻译:我们定义了一种计算型理论,将卡提西亚立方体类型理论的内容平等结构与内部参数原始法结合起来。 合并理论支持单体及其关系等同,我们称之为相对论。 我们通过分析较高感性类型之间的多形态函数来展示该理论的使用,观察立方平等如何规范参数类型理论,并研究与直方和参数类型理论之间的相似和差异,它们密切相关。我们还抽象了与计算解释的正式界面,并表明这也有前希法模型。