Non-isolated systems have diverse coupling relations with the external environment. These relations generate complex thermodynamics and information transmission between the system and its environment. The framework depicted in the current research attempts to glance at the critical role of the internal orders inside the non-isolated system in shaping the information thermodynamics coupling. We characterize the coupling as a generalized encoding process, where the system acts as an information thermodynamics encoder to encode the external information based on thermodynamics. We formalize the encoding process in the context of the nonequilibrium second law of thermodynamics, revealing an intrinsic difference in information thermodynamics characteristics between information thermodynamics encoders with and without internal correlations. During the information encoding process of an external source $\mathsf{Y}$, specific sub-systems in an encoder $\mathsf{X}$ with internal correlations can exceed the information thermodynamics bound on $\left(\mathsf{X},\mathsf{Y}\right)$ and encode more information than system $\mathsf{X}$ works as a whole. We computationally verify this theoretical finding in an Ising model with a random external field and a neural data set of the human brain during visual perception and recognition. Our analysis demonstrates that the stronger internal correlation inside these systems implies a higher possibility for specific sub-systems to encode more information than the global one. These findings may suggest a new perspective in studying information thermodynamics in diverse physical and biological systems.
翻译:非孤立的系统与外部环境有着多种多样的连接关系。 这些关系在系统及其环境之间产生了复杂的热动力学和信息传输。 当前研究中描述的框架试图观察非孤立的系统中内部秩序在塑造信息热动力学联动方面的关键作用。 我们把这种联动描述为一种通用编码过程, 该系统作为基于热动力学的信息系统编码器, 以编码外部信息。 我们正式确定在热动力学的无正比第二定律背景下的编码过程, 揭示信息中热动力学特性的内在差异。 在外部源的信息编码过程中 $\ maths{Y} 美元, 特定子系统中特定的子系统作为基于热动力学的信息, 可以超过由 $\ left(math{X} 和\ mathfright) 系统连接的信息, 显示与内部热动力学的内在动力学特性之间的内在差异。 在一个信息编码过程中,我们内部的模型系统 和大脑内部的直观值分析 显示一个更强烈的内脏 。