This paper studies the problem of matching two complete graphs with edge weights correlated through latent geometries, extending a recent line of research on random graph matching with independent edge weights to geometric models. Specifically, given a random permutation $\pi^*$ on $[n]$ and $n$ iid pairs of correlated Gaussian vectors $\{X_{\pi^*(i)}, Y_i\}$ in $\mathbb{R}^d$ with noise parameter $\sigma$, the edge weights are given by $A_{ij}=\kappa(X_i,X_j)$ and $B_{ij}=\kappa(Y_i,Y_j)$ for some link function $\kappa$. The goal is to recover the hidden vertex correspondence $\pi^*$ based on the observation of $A$ and $B$. We focus on the dot-product model with $\kappa(x,y)=\langle x, y \rangle$ and Euclidean distance model with $\kappa(x,y)=\|x-y\|^2$, in the low-dimensional regime of $d=o(\log n)$ wherein the underlying geometric structures are most evident. We derive an approximate maximum likelihood estimator, which provably achieves, with high probability, perfect recovery of $\pi^*$ when $\sigma=o(n^{-2/d})$ and almost perfect recovery with a vanishing fraction of errors when $\sigma=o(n^{-1/d})$. Furthermore, these conditions are shown to be information-theoretically optimal even when the latent coordinates $\{X_i\}$ and $\{Y_i\}$ are observed, complementing the recent results of [DCK19] and [KNW22] in geometric models of the planted bipartite matching problem. As a side discovery, we show that the celebrated spectral algorithm of [Ume88] emerges as a further approximation to the maximum likelihood in the geometric model.
翻译:本文研究将两个完整的图形匹配为两个完整的图形的问题, 两个完整的图形通过隐性地理偏差来匹配, 扩大最近对随机图形的研究线, 与独立的边缘重量匹配到几何模型。 具体地说, 某些链接函数的 $$\ pi ⁇ $ 和 $ iid 配对的 Gausian 矢量的 $\ X ⁇ pí { (i) 美元, Y_ i ⁇ \\\\\\ 美元 美元, 美元以 mathbrlogy 参数 来匹配两个完整的图表, 以 $\\\ rimax 来匹配两个完整的图表, 以 $\\\ liqrqual_ max 和 $xlqual- roqual_ modemodeal max, 以 $xxxxxxxxxx= romodemodeal_ max, max max max max romodeal_ romodeal_ romodeal_ max_ maxxxxxxxxxxxxxxxx romoxxxxxxxxx rol=xxxxxxxx