The discovery of the disentanglement properties of the latent space in GANs motivated a lot of research to find the semantically meaningful directions on it. In this paper, we suggest that the disentanglement property is closely related to the geometry of the latent space. In this regard, we propose an unsupervised method for finding the semantic-factorizing directions on the intermediate latent space of GANs based on the local geometry. Intuitively, our proposed method, called Local Basis, finds the principal variation of the latent space in the neighborhood of the base latent variable. Experimental results show that the local principal variation corresponds to the semantic factorization and traversing along it provides strong robustness to image traversal. Moreover, we suggest an explanation for the limited success in finding the global traversal directions in the latent space, especially W-space of StyleGAN2. We show that W-space is warped globally by comparing the local geometry, discovered from Local Basis, through the metric on Grassmannian Manifold. The global warpage implies that the latent space is not well-aligned globally and therefore the global traversal directions are bound to show limited success on it.
翻译:在GANs中发现潜伏空间的分解特性引发了许多研究,以找到其具有内涵意义的方向。在本文中,我们建议,分解特性与潜伏空间的几何特征密切相关。在这方面,我们建议采用一种不受监督的方法,根据当地的几何方法,寻找GANs中间潜伏空间的分解分解特性方向。从直觉来看,我们所拟议的方法,即地方基础基础,发现基础潜伏变量附近潜伏空间的主要变化。实验结果表明,地方主要变异与其中的语义因数化和曲折相匹配,为图像穿行提供了很强的强力。此外,我们提出一个解释,说明在寻找潜伏空间,特别是StyleGAN2的W-空间的全球跨行方向方面,取得了有限的成功。我们表明,W-空间通过比较从地方基础,通过格拉斯曼Manfurvey的测量方法,在全球范围上发现的地方的几何测度方法,而使W-空间发生矛盾。全球战争页表明,潜伏空间在全球范围是有限的,因此显示全球的成功方向是有限的。