This paper investigates robust recovery of an undamped or damped spectrally sparse signal from its partially revealed noisy entries within the framework of spectral compressed sensing. Nonconvex optimization approaches such as projected gradient descent (PGD) based on low-rank Hankel matrix completion model have recently been proposed for this problem. However, the analysis of PGD relies heavily on the operation of projection onto feasible set involving two tuning parameters, and the theoretical guarantee in noisy case is still missing. In this paper, we propose a vanilla gradient descent (VGD) algorithm without projection based on low-rank Hankel noisy matrix completion, and prove that VGD can achieve the sample complexity $O(K^2\log^2 N)$, where $K$ is the number of the complex exponential functions and $N$ is the signal dimensions, to ensure robust recovery from noisy observations when noise parameter satisfies some mild conditions. Moreover, we show the possible performance loss of PGD, suffering from the inevitable estimation of the above two unknown parameters of feasible set. Numerical simulations are provided to corroborate our analysis and show more stable performance obtained by VGD than PGD when dealing with damped spectrally sparse signal.


翻译:本文调查了在光谱压缩感测框架内,从部分暴露出的噪音条目中强有力地恢复未加印的或屏蔽的光谱稀释信号。最近为这一问题提出了基于低级汉克尔矩阵完成模型的非电流优化方法,如基于低级汉克尔矩阵完成模型的预测梯度下降(PGD),然而,对PGD的分析严重依赖投影到涉及两个调试参数的可行数据集的操作,而噪音参数仍然缺乏对噪音案例的理论保障。在本文中,我们提议一种香草梯度下降(VGD)算法,而没有基于低级汉克尔噪音矩阵完成的预测进行预测,并证明VGD能够达到样本复杂性$O(K2\log2N),其中$是复杂的指数函数数量,而$N$是信号层面,以确保在噪音参数满足某些温和条件时,从噪音观测中得到有力的恢复。此外,我们显示了PGDD可能因不可避免的估计上述两个未知的可行参数而丧失的性能。提供了数字模拟,以证实我们的分析,并显示VGDGD在与深光谱信号处理时比PGD取得比PGD取得的更稳定的性表现。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月25日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员