We study the Gaussian quasi-likelihood estimation of the parameter $\theta:=(\alpha,\beta,\gamma)$ of the square-root diffusion process, also known as the Cox-Ingersoll-Ross (CIR) model, observed at high frequency. Different from the previous study [1] under low-frequency sampling, high-frequency of data provides us with very simple form of the asymptotic covariance matrix. Through easy-to-compute preliminary contrast functions, we formulate a practical two-stage manner without numerical optimization in order to conduct not only an asymptotically efficient estimation of the drift parameters, but also high-precision estimator of the diffusion parameter. Simulation experiments are given to illustrate the results. [1] L. Overbeck and T. Ryd\'en. Estimation in the Cox-Ingersoll-Ross model. Econometric Theory, 13(3): 430-461, 1997.
翻译:我们研究高斯对数值$theta:= (\\pha,\beta,\gamma)平底扩散过程(又称Cox-Ingersoll-Ross(CIR)模型)参数的近似估计值,该模型是高频观测的。不同于先前在低频取样下进行的研究[1],高数据频率为我们提供了非常简单的无症状共变量矩阵形式。通过简单计算初步对比功能,我们制定了实用的两阶段方法,不进行数字优化,以便不仅对漂移参数进行无症状有效估计,而且对扩散参数进行高精度估计。模拟实验是为了说明结果。 [1 L. Overbeck和T. Ryd\en. Cox-Ingersoll-Ross模型的动画。 亚度计量理论, 13(3): 430-461, 1997。