Spectral Computed Tomography (CT) is an emerging technology that enables to estimate the concentration of basis materials within a scanned object by exploiting different photon energy spectra. In this work, we aim at efficiently solving a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT. In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function using a randomized second order method. By approximating the Newton step using a sketching of the Hessian of the likelihood function, it is possible to reduce the complexity while retaining the complex prior structure given by the data-driven regularizer. We exploit a non-uniform block sub-sampling of the Hessian with inexact but efficient Conjugate gradient updates that require only Jacobian-vector products for denoising term. Finally, we show numerical and experimental results for spectral CT materials decomposition.
翻译:光谱成像仪(CT)是一种新兴技术,它能够利用不同的光子能量光谱来估计基准材料在扫描对象中的浓度。在这项工作中,我们的目标是有效地解决基于模型的最大一个隐性问题,以利用光谱CT来重建多物质图像。特别是,我们提议使用随机的第二顺序方法,根据插座图像偏移功能来解决常规化优化问题。通过对可能性函数的赫西人进行草图绘制来接近牛顿步骤,可以减少复杂性,同时保留由数据驱动的常规化器提供的复杂先前结构。我们利用非统一的块块子子子抽样,其不精确但高效的相形梯度更新只需要雅各布-Victor产品来进行脱色术语。最后,我们展示了光谱CT材料分解的数值和实验结果。