Taxonomy is a hierarchically structured knowledge graph that plays a crucial role in machine intelligence. The taxonomy expansion task aims to find a position for a new term in an existing taxonomy to capture the emerging knowledge in the world and keep the taxonomy dynamically updated. Previous taxonomy expansion solutions neglect valuable information brought by the hierarchical structure and evaluate the correctness of merely an added edge, which downgrade the problem to node-pair scoring or mini-path classification. In this paper, we propose the Hierarchy Expansion Framework (HEF), which fully exploits the hierarchical structure's properties to maximize the coherence of expanded taxonomy. HEF makes use of taxonomy's hierarchical structure in multiple aspects: i) HEF utilizes subtrees containing most relevant nodes as self-supervision data for a complete comparison of parental and sibling relations; ii) HEF adopts a coherence modeling module to evaluate the coherence of a taxonomy's subtree by integrating hypernymy relation detection and several tree-exclusive features; iii) HEF introduces the Fitting Score for position selection, which explicitly evaluates both path and level selections and takes full advantage of parental relations to interchange information for disambiguation and self-correction. Extensive experiments show that by better exploiting the hierarchical structure and optimizing taxonomy's coherence, HEF vastly surpasses the prior state-of-the-art on three benchmark datasets by an average improvement of 46.7% in accuracy and 32.3% in mean reciprocal rank.
翻译:分类法扩展任务旨在在现有分类学中找到一个新术语的位置,以捕捉世界新兴知识,并动态地更新分类学。 以前的分类法扩展解决方案忽视了由等级结构带来的宝贵信息,并评价了仅仅是一个新增边缘的正确性,将问题降格为节点评分或小型路径分类。在本文件中,我们提议了等级扩展框架(HEF),该框架充分利用等级结构的特性,以最大限度地实现扩大分类学的一致性。 HEF在多个方面利用分类学的等级结构:i) HEF利用包含最相关节点的子树作为自我监督数据,以完全比较亲子关系和双双向关系;ii) HEF采用一个一致性模型模块,通过整合超尼米关系探测和若干树级独项特征,评估分类法子系的一致性;iii HEF在选择位置时采用精准的评分,以利定位,明确评估双向水平的排序和最高等级结构的自我评级,从而通过充分利用前级关系和最高水平的自我评级,从而更精确地评估前级关系。