Inverse optimal transport (OT) refers to the problem of learning the cost function for OT from observed transport plan or its samples. In this paper, we derive an unconstrained convex optimization formulation of the inverse OT problem, which can be further augmented by any customizable regularization. We provide a comprehensive characterization of the properties of inverse OT, including uniqueness of solutions. We also develop two numerical algorithms, one is a fast matrix scaling method based on the Sinkhorn-Knopp algorithm for discrete OT, and the other one is a learning based algorithm that parameterizes the cost function as a deep neural network for continuous OT. The novel framework proposed in the work avoids repeatedly solving a forward OT in each iteration which has been a thorny computational bottleneck for the bi-level optimization in existing inverse OT approaches. Numerical results demonstrate promising efficiency and accuracy advantages of the proposed algorithms over existing state-of-the-art methods.
翻译:逆向最佳运输(OT) 指的是从观测到的运输计划或其样品中学习 OT的成本函数的问题。 在本文中,我们从对 OT 问题进行不受限制的调节优化配方,这种配方可以通过任何可定制的正规化而进一步增强。我们对反 OT 的特性提供了全面的定性,包括解决办法的独特性。我们还开发了两种数字算法,一种基于离散 OT Sinkhorn-Knopp 算法的快速矩阵缩放法,另一种基于学习的算法,将成本函数参数化为连续OT 的深神经网络。工作中提议的新框架避免了反复解决每个迭代中的前方OT,它一直是现有反向的OT 方法中双级优化的一个棘手的计算瓶颈。 数字结果表明,所提议的算法对于现有最先进的方法来说,具有很有希望的效率和准确性优势。