Self-supervision may boost model performance in downstream tasks. However, there is no principled way of selecting the self-supervised objectives that yield the most adaptable models. Here, we study this problem on daily time-series data generated from wearable sensors used to detect onset of influenza-like illness (ILI). We first show that using self-supervised learning to predict next-day time-series values allows us to learn rich representations which can be adapted to perform accurate ILI prediction. Second, we perform an empirical analysis of three different self-supervised objectives to assess their adaptability to ILI prediction. Our results show that predicting the next day's resting heart rate or time-in-bed during sleep provides better representations for ILI prediction. These findings add to previous work demonstrating the practical application of self-supervised learning from activity data to improve health predictions.
翻译:自我监督可以提高下游任务的模型性能。 但是,没有原则性的方法来选择产生最适应性强模型的自我监督目标。 在这里, 我们研究了用于检测流感类似疾病的发病(LI)的磨损感应器(LI)产生的每日时间序列数据问题。 我们首先显示,使用自我监督学习来预测下天的时间序列值,可以使我们学到丰富的表达方式,这些表达方式可以适应于准确的 ILI 预测。 其次, 我们对三个不同的自我监督目标进行了实证分析,以评估它们对 ILI 预测的适应性。 我们的结果显示,预测第二天的心跳率或睡眠期间在床上的时间为ILI 预测提供了更好的表达方式。 这些结果补充了先前的工作,表明从活动数据中进行自我监督学习以改善健康预测的实际应用。