We propose a multiscale approach for a nonlinear Helmholtz problem with possible oscillations in the Kerr coefficient, the refractive index, and the diffusion coefficient. The method does not rely on structural assumptions on the coefficients and combines the multiscale technique known as Localized Orthogonal Decomposition with an adaptive iterative approximation of the nonlinearity. We rigorously analyze the method in terms of well-posedness and convergence properties based on suitable assumptions on the initial data and the discretization parameters. Numerical examples illustrate the theoretical error estimates and underline the practicability of the approach.
翻译:我们建议对非线性赫尔莫霍茨问题采取多尺度办法,其中涉及Kerr系数、折射指数和传播系数中可能的振动。该方法不依赖对系数的结构假设,而是将称为局部正向分解的多尺度技术与非线性适应性迭接近似结合起来。我们根据对初始数据和离散参数的适当假设,严格分析稳妥性和趋同性特性的方法。数字示例说明了理论错误估计,并强调了该方法的可行性。