Autonomous Systems (AS) are being increasingly proposed, or used, in Safety Critical (SC) applications, e.g., road vehicles. Many such systems make use of sophisticated sensor suites and processing to provide scene understanding which informs the AS' decision-making, e.g., path planning. The sensor processing typically makes use of Machine Learning (ML) and has to work in challenging environments, further the ML algorithms have known limitations, e.g., the possibility of false negatives or false positives in object classification. The well-established safety analysis methods developed for conventional SC systems are not well-matched to AS, ML, or the sensing systems used by AS. This paper proposes an adaptation of well-established safety analysis methods to address the specifics of sensing systems for AS, including addressing environmental effects and the potential failure modes of ML, and provides a rationale for choosing particular sets of guide words, or prompts, for safety analysis. It goes on to show how the results of the analysis can be used to inform the design and verification of the AS system and illustrates the new method by presenting a partial analysis of a mobile robot. The illustrations in the paper are primarily based on optical sensing, however the paper discusses the applicability of the method to other sensing modalities and its role in a wider safety process addressing the overall capabilities of AS


翻译:许多这类系统利用先进的传感器套件和处理方法,提供现场了解,为AS决策提供参考,例如道路规划。传感器处理通常使用机器学习(ML),并且必须在具有挑战性的环境中工作,此外,ML算法也存在已知的局限性,例如在物体分类中有可能出现虚假的负数或虚假的正数。为常规SC系统开发的完善的安全分析方法与AS、ML或AS使用的遥感系统不完全匹配。本文件建议调整完善的安全分析方法,以解决AS系统遥感系统的具体特点,包括处理环境效应和ML的潜在失败模式,并为选择特定的指导词或提示词或提示词进行安全分析提供理由。它继续表明如何利用分析结果为AS系统的设计和核查提供信息,并通过对移动机器人、ML或AS使用的遥感系统进行部分分析来说明新的方法。本文建议调整完善的安全分析方法,以处理AS系统遥感系统的具体特点,包括处理ML的环境影响和潜在失败模式,并为选择具体的指导词或提示词或提示词提供理由。它的分析结果说明如何为AS系统的设计与核查提供信息,通过对移动机器人进行部分分析来说明新的方法。本文中较广泛的应用能力,但是,其分析方法的图解析方法的主要是分析方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员