We study randomized quasi-Monte Carlo integration by scrambled nets. The scrambled net quadrature has long gained its popularity because it is an unbiased estimator of the true integral, allows for a practical error estimation, achieves a high order decay of the variance for smooth functions, and works even for $L^p$-functions with any $p\geq 1$. The variance of the scrambled net quadrature for $L^2$-functions can be evaluated through the set of the so-called gain coefficients. In this paper, based on the system of Walsh functions and the concept of dual nets, we provide improved upper bounds on the gain coefficients for digital nets in general prime power base. Our results explain the known bound by Owen (1997) for Faure sequences, the recently improved bound by Pan and Owen (2021) for digital nets in base 2 (including Sobol' sequences as a special case), and their finding that all the nonzero gain coefficients for digital nets in base 2 must be powers of two, all in a unified way.
翻译:我们研究的是用炒鱼网混成的半蒙特卡罗(准蒙卡罗) 。 炒鱼网的二次曲线长期以来一直受到欢迎, 因为它是真实整体的公正估计符, 允许进行实际的错误估计, 实现顺利功能差异的高度顺序衰减, 甚至用任何$p\geq 1 美元来运行, 甚至用任何$p\ geq 1 美元来运行。 盘炒网的二次曲线差异可以通过一套所谓的增益系数来评估 。 在本文中, 基于沃尔什函数系统和双网概念, 我们提供了数字网在一般主电源基础的增益系数的改进上限。 我们的结果解释了Owen(1997) (1997) 对Faure 序列的已知限制, 最近Pan 和 Owen (2021) 对基底2 数字网( 包括Sobol 的序列作为特例) 的改进后, 以及它们发现2级数字网的所有非零增益系数都必须以两种统一方式具有两种权力 。