Balancing human development with conservation necessitates ecological policies that optimize outcomes within limited budgets, highlighting the importance of cost-efficiency and local impact analysis. This study employs the Socio-Econ-Ecosystem Multipurpose Simulator (SEEMS), an Agent-Based Model (ABM) designed for simulating small-scale Coupled Human and Nature Systems (CHANS), to evaluate the cost-efficiency of two major ecology conservation programs: Grain-to-Green (G2G) and Firewood-to-Electricity (F2E). Focusing on China Wolong National Reserve, a worldwide hot spot for flagship species conservation, the study evaluates the direct benefits of these programs, including reverted farmland area and firewood consumption, along with their combined indirect benefits on habitat quality, carbon emissions, and gross economic benefits. The findings are as follows: (1) The G2G program achieves optimal financial efficiency at approximately 500 CNY/Mu, with diminishing returns observed beyond 1000 CNY/Mu; (2) For the F2E program, the most fiscally cost-efficient option arises when the subsidized electricity price is at 0.4-0.5 CNY/kWh, while further reductions of the prices to below 0.1 CNY/kWh result in a diminishing cost-benefit ratio; (3) Comprehensive cost-efficiency analysis reveals no significant link between financial burden and carbon emissions, but a positive correlation with habitat quality and an inverted U-shaped relationship with total economic income; (4) Pareto analysis identifies 18 optimal dual-policy combinations for balancing carbon footprint, habitat quality, and gross economic benefits; (5) Posterior Pareto optimization further refines the selection of a specific policy scheme for a given realistic scenario. The analytical framework of this paper helps policymakers design economically viable and environmentally sustainable policies, addressing global conservation challenges.
翻译:暂无翻译