We introduce a hybrid method to couple continuous Galerkin finite element methods and high-order finite difference methods in a nonconforming multiblock fashion. The aim is to optimize computational efficiency when complex geometries are present. The proposed coupling technique requires minimal changes in the existing schemes while maintaining strict stability, accuracy, and energy conservation. Results are demonstrated on linear and nonlinear scalar conservation laws in two spatial dimensions.
翻译:我们引入一种混合方法,将连续的Galerkin定点元素法和高阶定点差异法以不兼容的多块方式对齐,目的是在复杂的地理特征出现时优化计算效率。拟议的混合技术要求对现有计划进行最低限度的修改,同时保持严格的稳定性、准确性和节能。结果体现在两个空间层面的线性和非线性标量保护法上。