We consider dimension reduction of multiview data, which are emerging in scientific studies. Formulating multiview data as multi-variate data with block structures corresponding to the different views, or views of data, we estimate top eigenvectors from multiview data that have two-fold sparsity, elementwise sparsity and blockwise sparsity. We propose a Fantope-based optimization criterion with multiple penalties to enforce the desired sparsity patterns and a denoising step is employed to handle potential presence of heteroskedastic noise across different data views. An alternating direction method of multipliers (ADMM) algorithm is used for optimization. We derive the l2 convergence of the estimated top eigenvectors and establish their sparsity and support recovery properties. Numerical studies are used to illustrate the proposed method.
翻译:我们考虑在科学研究中出现的多视角数据减少维度的问题。 将多视角数据作为多变量数据,与不同观点或数据观点相对应的区块结构形成多变量数据,我们从具有双倍宽度、元素宽度和块状宽度的多视图数据中估算出顶级增生素。我们建议基于方形的优化标准,并采用多重处罚以强制实施所期望的聚度模式,并采用分解步骤处理不同数据观点中可能存在的超导噪声。在优化时,使用乘数的交替方向法(ADMMM)算法(ADMM)法(ADMM)进行交替。我们得出了估计顶层增生素的l2趋同,并建立了其宽度和支持恢复的特性。我们用数字研究来说明拟议方法。