Saliency methods -- techniques to identify the importance of input features on a model's output -- are a common first step in understanding neural network behavior. However, interpreting saliency requires tedious manual inspection to identify and aggregate patterns in model behavior, resulting in ad hoc or cherry-picked analysis. To address these concerns, we present Shared Interest: a set of metrics for comparing saliency with human annotated ground truths. By providing quantitative descriptors, Shared Interest allows ranking, sorting, and aggregation of inputs thereby facilitating large-scale systematic analysis of model behavior. We use Shared Interest to identify eight recurring patterns in model behavior including focusing on a sufficient subset of ground truth features or being distracted by contextual features. Working with representative real-world users, we show how Shared Interest can be used to rapidly develop or lose trust in a model's reliability, uncover issues that are missed in manual analyses, and enable interactive probing of model behavior.
翻译:测量方法 -- -- 确定模型输出中输入特征重要性的技术 -- -- 是了解神经网络行为的一个常见的第一步。然而,解释显著性需要冗长的手工检查,以识别和汇总模型行为模式模式模式模式,从而进行特别或樱桃式的分析。为了解决这些问题,我们提出了共同利益:一套衡量标准,用以将显著性与人类附加说明的地面事实进行比较。通过提供数量描述符,共同利益允许对投入进行排序、分类和汇总,从而便利对模型行为进行大规模系统分析。我们利用共同利益来确定模型行为中的八种反复模式,包括侧重于足够一组地面真相特征或被背景特征转移。我们与具有代表性的现实世界用户合作,展示如何利用共同利益迅速开发或丧失对模型可靠性的信任,发现在手工分析中忽略的问题,并能够对模型行为进行互动验证。