Self-tracking can improve people's awareness of their unhealthy behaviors to provide insights towards behavior change. Prior work has explored how self-trackers reflect on their logged data, but it remains unclear how much they learn from the tracking feedback, and which information is more useful. Indeed, the feedback can still be overwhelming, and making it concise can improve learning by increasing focus and reducing interpretation burden. We conducted a field study of mobile food logging with two feedback modes (manual journaling and automatic annotation of food images) and identified learning differences regarding nutrition, assessment, behavioral, and contextual information. We propose a Self-Tracking Feedback Saliency Framework to define when to provide feedback, on which specific information, why those details, and how to present them (as manual inquiry or automatic feedback). We propose SalienTrack to implement these requirements. Using the data collected from the user study, we trained a machine learning model to predict whether a user would learn from each tracked event. Using explainable AI (XAI) techniques, we identified the most salient features per instance and why they lead to positive learning outcomes. We discuss implications for learnability in self-tracking, and how adding model explainability expands opportunities for improving feedback experience.
翻译:自我跟踪可以提高人们对其不健康行为的认识,从而提供行为变化的洞察力。 先前的工作已经探索了自我跟踪者如何反映其记录的数据,但是仍然不清楚他们从跟踪反馈中学到了多少信息,哪些信息更有用。 事实上,反馈仍然会是压倒性的,并且通过增加重点和减少解释负担来使其简洁化可以改善学习。 我们用两种反馈模式(对食物图像进行人工日记和自动批注)对移动食物记录进行了实地研究,并查明了营养、评估、行为和背景信息方面的学习差异。 我们提出了一个自我跟踪反馈宽度框架,以确定何时提供反馈,哪些具体信息、为什么这些细节以及如何(作为人工查询或自动反馈)提供反馈。 我们建议萨利安Track执行这些要求。 我们利用从用户研究中收集的数据,培训了一个机器学习模型,以预测用户是否会从每个跟踪的事件中学习。 我们使用可解释的 AI (XAI) 技术,确定了每个实例最突出的特点,以及为什么它们会导致积极的学习结果。 我们讨论在自我跟踪中学习的可能性,以及如何增加机会。