Stabilization-free virtual element methods in arbitrary degree of polynomial are developed for second order elliptic problems, including a nonconforming virtual element method in arbitrary dimension and a conforming virtual element method in two dimensions. The key is to construct local $H(\textrm{div})$-conforming macro finite element spaces such that the associated $L^2$ projection of the gradient of virtual element functions is computable, and the $L^2$ projector has a uniform lower bound on the gradient of virtual element function spaces in $L^2$ norm. Optimal error estimates are derived for these stabilization-free virtual element methods. Numerical results are provided to verify the convergence rates.
翻译:在任意程度的多元椭圆度方面,为第二顺序椭圆度问题开发了无固定虚拟元素方法,包括任意度方面不兼容的虚拟元素方法和两个方面符合的虚拟元素方法,关键是建造本地的$H(\textrm{div})$(美元)与宏观限定要素一致的空间,以便计算虚拟元素函数梯度的相关2美元预测值,而$L2美元投影机在虚拟元素功能空间梯度上的统一下限为$L2$(标准值)。为这些无固定虚拟元素方法得出了最佳误差估计值。提供了数字结果,以核实聚合率。