Model compression can significantly reduce the sizes of deep neural network (DNN) models, and thus facilitates the dissemination of sophisticated, sizable DNN models, especially for their deployment on mobile or embedded devices. However, the prediction results of compressed models may deviate from those of their original models. To help developers thoroughly understand the impact of model compression, it is essential to test these models to find those deviated behaviors before dissemination. However, this is a non-trivial task because the architectures and gradients of compressed models are usually not available. To this end, we propose DFLARE, a novel, search-based, black-box testing technique to automatically find triggering inputs that result in deviated behaviors in image classification tasks. DFLARE iteratively applies a series of mutation operations to a given seed image, until a triggering input is found. For better efficacy and efficiency, DFLARE models the search problem as Markov Chains and leverages the Metropolis-Hasting algorithm to guide the selection of mutation operators in each iteration. Further, DFLARE utilizes a novel fitness function to prioritize the mutated inputs that either cause large differences between two models' outputs, or trigger previously unobserved models' probability vectors. We evaluated DFLARE on 21 compressed models for image classification tasks with three datasets. The results show that DFLARE outperforms the baseline in terms of efficacy and efficiency. We also demonstrated that the triggering inputs found by DFLARE can be used to repair up to 48.48% deviated behaviors in image classification tasks and further decrease the effectiveness of DFLARE on the repaired models.


翻译:模型压缩可以大大缩小深神经网络(DNN)模型的大小,从而有利于传播复杂、可扩展的DNN模型,特别是用于移动或嵌入装置的模型。然而,压缩模型的预测结果可能与原始模型的预测结果不同。为了帮助开发者彻底理解模型压缩的影响,必须测试这些模型,以便在传播之前找到这些偏离的行为。然而,这是一项非边际任务,因为压缩模型的架构和梯度通常不可用。为此,我们提议DFLARE(一种新型的、基于搜索的、黑箱测试技术),以自动发现触发输入,从而导致图像分类任务中出现偏差的行为。DFLARE(D)将一系列突变操作操作应用给某个种子图像,直到找到触发输入。为了提高效能和效率,DFLARE(Markov 链)和Teopolis-Hasting 算法算法(Metopolis-Hasting 算法)来指导每次循环中的变异操作者的选择。此外,DFLARE(DARE)利用一种非新型的变更精确的计算功能,在图像模型上,我们用三级的变动的变动的变动的变动的变动的变压模型可以显示前的变动的变压变压变压变压变压变压的变动的变压的变压变压变压的变压的变动的DRLALALALALALLLLLLLLLLLLLLLLLLLL) 。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员