In this work, we analyze the finite element method with arbitrary but fixed polynomial degree for the nonlinear Helmholtz equation with impedance boundary conditions. We show well-posedness and error estimates of the finite element solution under a resolution condition between the wave number $k$, the mesh size $h$ and the polynomial degree $p$ of the form ``$k(kh)^{p+1}$ sufficiently small'' and a so-called smallness of the data assumption. For the latter, we prove that the logarithmic dependence in $h$ from the case $p=1$ in [H.~Wu, J.~Zou, \emph{SIAM J.~Numer.~Anal.} 56(3): 1338-1359, 2018] can be removed for $p\geq 2$. We show convergence of two different fixed-point iteration schemes. Numerical experiments illustrate our theoretical results and compare the robustness of the iteration schemes with respect to the size of the nonlinearity and the right-hand side data.
翻译:在这项工作中,我们分析了具有任意但固定的多元度的限定元素方法,用于非线性Helmholtz方程式,并带有阻碍边界条件。我们展示了在波数 $k美元、网数 $h 美元和多元度 $p$@k(kh) ⁇ p+1} 之间分辨率条件下的有限元素溶液的精确度和误差估计值,其形式为 $k(kh) ⁇ p+1} 足够小,而且所谓的数据假设规模较小。对于后者,我们证明在[H~Wu, J. ⁇ ou,\emph{SIAM J.~Numer.~Anal.}56(3):1338-1359,2018] 中,可以去除以美元计值为 $pg2。我们显示了两个不同的固定点的电路段的汇合值计划。Numericalical 实验可以说明我们的理论结果,并比较与非线性和右侧数据之间的迭性计划的坚固性。